Math 9 Section 2.2 Powers of Tens and Zeros

1. Evaluate the following without a calculator:

a) 10 ⁵	b) -7°	c) 10^{-3}	d) 10^2
e) 100 ²	f) $(1+99)^0-4$	g) $-4 - (22 \times 4)^0$	h) $(10^{10}-5)^0$
i) $10^2 - 5^0 \times (-2)$	j) $10^{-4} \times 10^3$	k) $12 \times 3^2 + 1999^0$	L) $3 \times 10^3 + 2 \times 10^2$

2. Write each of the following as a power of 10:

a) 945	b) 12,391	c) 9385
d) 12,035	e) 1,003,840	f) 30,003,152

3. Write each of the following in standard form:

a) $9 \times 10^3 + 8 \times 10^2 + 7 \times 10 + 3$	b) $8 \times 10^5 + 2 \times 10^3 + 8 \times 10^2 + 1$	c) $7 \times 10^7 + 6 \times 10^5 + 3 \times 10^2 + 1$
d) $5 \times 10^5 + 6 \times 10^4 + 9 \times 10^3 + 2 \times 10$	e) $1 \times 10^2 + 2 \times 10^5 + 9 \times 10^3 + 5$	f) $5 \times 10^8 + 1 \times 10^9 + 9 \times 100 + 1$

4. Solve for "x" in each of the following:

a) $10^x = 1,000,000$	b) $10^x = 0.00001$	c) $10^x = 10000$
d) $10^x = (1000)^3$	e) $100^x = 10^{22}$	$f) 10^3 \times 10^4 = 10^x$

- 5. Given that a,b,c, and d are all single digit integers, what is the value of a+b+c+d? $9\times10^a+8\times10^b+c\times10^2+d=8791$
- 6. The distance from the sun to the earth is $15 \times 10^{14} km$. If a space ship can travel at 10000km/s, how long will it take to travel from the earth to the sun?
- 7. The mass of an electron is 9.1×10^{-31} and the mass of a proton is 1.7×10^{-27} . How many electrons is equal to the mass of on proton?
- 8. Solve for "x" in each of the following equation:

$$\frac{16^x}{2^{3x}} = 128$$

$$(4^{x+1})(2^5) = 65536$$

2